Products > RF ICs/Discretes > RF ICs > Silicon Amplifiers, Gain Blocks > MSA-0711

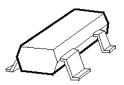
MSA-0711

6V Fixed Gain, General Purpose Amplifier

MSA-0711 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

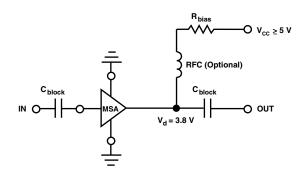

The MSA-0711 is a low cost silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in the surface mount plastic SOT-143 package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz f_{T} , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Features

- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 1.9 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Low Cost Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- Lead-free Option Available

SOT-143 Package


Pin Connections and Package Marking

Notes:

Top View. Package Marking provides orientation and identification. "x" is the date code.

Typical Biasing Configuration

MSA-0711 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]	
Device Current	50 mA	
Power Dissipation ^[2,3]	175 mW	[
RF Input Power	+13 dBm	
Junction Temperature	150°C	
Storage Temperature	–65 to 150°C	

Thermal Resistance^[2]:

 $\theta_{jc} = 505^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

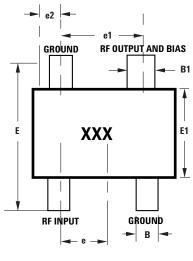
2. $T_{CASE} = 25^{\circ}C.$

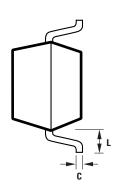
3. Derate at 2.0 mW/°C for $T_C > 62$ °C.

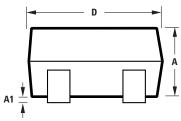
Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I	$d = 22 \text{ mA}, Z_0 = 50 \Omega$	Units	Min.	Тур.	Max.
G _P	Power Gain (S ₂₁ ²)	f = 0.1 GHz f = 1.0 GHz	dB	10.0	13.0 12.0	
ΔG_P	Gain Flatness	f = 0.1 to 1.3 GHz	dB		±0.8	
f _{3 dB}	3 dB Bandwidth		GHz		3.2	
VSWR	Input VSWR	f = 0.1 to 2.0 GHz			1.5:1	
VOVIK	Output VSWR	f = 0.1 to 2.0 GHz			1.5:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		5.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		5.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		18.0	
t _D	Group Delay	f = 1.0 GHz	psec		145	
V _d	Device Voltage	$T_C = 25^{\circ}C$	V	3.0	3.8	4.6
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-7.0	

Note:


1. The recommended operating current range for this device is 15 to 30 mA. Typical performance as a function of current is on the following page.


Ordering Information


Part Numbers	No. of Devices	Comments
MSA-0711-BLK	100	Bulk
MSA-0711-BLKG	100	Bulk
MSA-0711-TR1	3000	7" Reel
MSA-0711-TR1G	3000	7" Reel
MSA-0711-TR2	10000	13" Reel
MSA-0711-TR2G	10000	13" Reel

Note: Order part number with a "G" suffix if lead-free option is desired.

SOT-143 Package Dimensions

	DIMENSIONS (mm)		
SYMBOL	MIN.	MAX.	
Α	0.79	1.097	
A1	0.013	0.10	
В	0.36	0.54	
B1	0.76	0.92	
C	0.086	0.152	
D	2.80	3.06	
E1	1.20	1.40	
е	0.89	1.02	
e1	1.78	2.04	
e2	0.45	0.60	
E	2.10	2.65	
L	0.45	0.69	

Notes: XXX-package marking Drawings are not to scale

